
Inverse Problems Symposium 2007 East Lansing, Michigan, USA 

1 

 

A Hybrid Approach with Artificial Neural Networks, Levenberg-Marquardt 

and Simulated Annealing Methods for the Solution of Drying Inverse Problems 
 

J. Lugon Jr. 

Center for Environmental Technology, 

Diretoria de Inovação e Meio Ambiente, DIM, 

Federação das Indústrias do Rio de Janeiro, 

Sistema FIRJAN 

Rio de Janeiro, RJ, Brazil 

jljunior@firjan.org.br 

A. J. Silva Neto 
Department of Mechanical Engineering and 

Energy, 

Instituto Politécnico, IPRJ, Universidade do 

Estado do Rio de Janeiro,UERJ 

Nova Friburgo, RJ, Brazil 

ajsneto@iprj.uerj.br 
 

Introduction 

The analysis of the simultaneous heat and mass 
transfer phenomena in porous media is of great interest [1-
8] and in most cases the mathematical model used is based 
on Luikov equations [1,4,5]. More recently, the inverse 
problem involving the drying phenomena has attracted the 
attention of several researchers. 

In the present work we extend the results of [8] using 
an ANN [9-10] to generate the initial guess for the LM 
and another ANN to approximate the gradient needed by 
LM. Another improvement introduced in the present work 
is the use of a different choice of the parameters to be 
estimated, allowing the design of an experiment with 
higher sensitivity coefficients. 

In Fig. 1, adapted from [3], it is represented the drying 
experiment setup. 
 

 
Fig. 1. Drying experiment setup (adapted from [2]). 

 
As many others authors, in previous works we have 

used measurements of temperature and moisture content 
in order to estimate the Luikov, Possnov, Kossovich, heat 
Biot and mass Biot numbers. In the present work we 
designed an “optimum” experiment and used Artificial 
Neural Networks, and its hybridization with Levenberg-
Marquardt and Simulated Annealing methods, to 
estimate the Luikov number and others primary 
properties and property ratios used in Luikov equations. 
 

Inverse Problem Formulation 
The inverse problem is implicitly formulated as a finite 

dimensional optimization problem [10,11] where one 
seeks to minimize the squared residues functional 
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where 
medG
r

 is the vector of measurements, 
calcG
r

 is the 

vector of calculated values, P
r

 is the vector of unknowns 

and W  is the diagonal matrix whose elements are the 
inverse of the measurement variances. 

The inverse problem solution *P
r

 minimizes the norm 
given by Eq. (1), that is 
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Inverse Problem Solution 

Using temperature measurements, T , taken by sensors 
located inside the medium and the average value for the 
moisture content, u , during the experiment, we try to 

estimate the vector of unknowns P
r

 which is a 
combination of the following variables: Lu  (Luikov 

number), δ  (thermogradient coefficient), cr  (relation 

between latent heat of evaporation and specific heat of the 
medium), kh  (relation between medium and air heat 

transfer coefficient and thermal conductivity), and 

mm kh  (relation between medium and air mass transfer 

coefficient and mass conductivity). 
After training, an ANN is able to quickly provide an 

inverse problem solution. This solution is used as an 
initial guess for the LM. 

A second ANN was trained to calculate the solute 

concentration, using the information on Lu , δ , cr , 

kh ,  
mm kh  and t . This ANN was used to provide an 



Inverse Problems Symposium 2007 East Lansing, Michigan, USA 

2 

approximation for the Jacobian matrix used in the LM 
method. 

Because of the project space complexity, if 
convergence is achieved by a deterministic method, the 
solution can be in fact a local minimum. So, after the LM, 
the Simulated Annealing (SA) method [7] is used do 
search for a possibly better solution in the neighborhood 
of the global minimum. If the SA results in the same 

solution given by LM, it is possibly a good approximation 
for the global minimum. 

The results obtained using the LM 1 (gradient 
approximated by FDM), LM 2 (gradient approximated by 
ANN), ANN and hybrid combinations, for different values 
of the standard deviation of temperature and average 
moisture content experimental errors,

Tσ  and 
uσ , 

respectively are  shown in Table 1. 
 

Table 1 – Results obtained using LM 1, LM 2, ANN and hybrid combinations. 

Case Method 
Tσ  uσ  Lu  δ  cr /  kh /  mm kh /  

Time 
(s) S  Eq. (1) 

1 LM 1 (FDM grad.) 0 0 0.0080 2.00 10.83 34.0 114.0 15 0 
2 LM 2 (ANN grad.) 0 0 0.0080 2.00 10.83 34.0 114.0 10 0 
3 LM 1 (FDM grad.) 0.08 0.002 0.0076 2.09 10.76 34.1 121.2 16 8881 
4 LM 2 (ANN grad.) 0.08 0.002 0.0093 1.71 10.73 34.1 95.7 11 8883 
5 ANN 0.08 0.002 0.0083 2.10 10.04 35.0 117.1 1 8893 
6 LM 1 (FDM grad.) 0.08 0.002 0.0083 1.92 10.75 35.0 110.0 16 8882 
7 LM 2 (ANN grad.) 0.08 0.002 0.0082 1.79 9.89 35.1 114.5 11 8881 
8 SA (20.000 evaluations) 0.08 0.002 0.0094 1.58 9.96 35.0 98.2 300 8885 
9 ANN-LM-SA 

SA (2000 evaluations) 
0.08 0.002 0.0082 1.97 10.94 33.9 109.2 43 8879 

08.0=Tσ  and 002.0=uσ  correspond to errors up to 5% in the experimental data. 

The exact values used are: 008.0=Lu , CM
oo0.2=δ , MCcr oo83.10/ = , 10.34/ −= mkh  and 10.114/ −= mkh mm

. 

While in test cases numbers 1, 2, 3 and 4 the initial guesses are 004.0=Lu , CM
oo0.3=δ , MCcr oo0.15/ = , 10.50/ −= mkh  and 

10.180/ −= mkh mm
, in test cases numbers 6, 7 and 9 the initial guesses are the estimates obtained with the ANN. 

 

Conclusions 
The hybrid combination ANN-LM-SA was able to 

produce good solutions for the inverse drying problem. 
The use of the ANN to obtain the derivatives in the 

first steps of the LM method reduced the time required for 
the solution of the problem.  
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